Argand Plane and Polar Representation

IMPORTANT

Argand Plane and Polar Representation: Overview

This topic covers concepts such as argand plane, polar form of a complex number, principle argument of a complex number, properties of argument of a complex number and exponential of a complex number.

Important Questions on Argand Plane and Polar Representation

EASY
IMPORTANT

If argz<0, then argzargz=

EASY
IMPORTANT

Let z and  w be two non-zero complex numbers such that  z=w  and  argz+argw=π  then z equals –

MEDIUM
IMPORTANT

If z=1+i31-i3 where i=-1, then what is the argument of z?

MEDIUM
IMPORTANT

Euler form of -1-i32

MEDIUM
IMPORTANT

In a parallelogram ABCD, AC=2BD and the diagonals are at right angles. If the vertices B and D are 2+4i and 3-5i then the complex number representing A can be

MEDIUM
IMPORTANT

Find the modulus and argument of z=-i-i3

EASY
IMPORTANT

Find the modulus and argument of 11+i.

EASY
IMPORTANT

Let z be a complex number. Then the angle between vectors z and -iz is 

MEDIUM
IMPORTANT

The principal value of amplitude of complex number z=sin8π7+icos8π71-i3+3i, where i=-1 is equal to

MEDIUM
IMPORTANT

Given complex numbers in modulus argument(in degrees) form, find the real part of z=xyw, where x=8 arg57°y=6 arg38° and w=5 arg33°.(Give answers to two decimal point)

EASY
IMPORTANT

Amplitude of 1+i1-i is

MEDIUM
IMPORTANT

Let z1 and z2 be two non-zero complex numbers. Then

EASY
IMPORTANT

The principal argument of the complex number z=8+4i1+3i is equal to

HARD
IMPORTANT

A complex number is such that it satisfies argz3-1z3+1=π2. Find the arc length of z

MEDIUM
IMPORTANT

Let Z is a complex number such that Z=1, then maximum value of Z+1+Z2-Z+1=?

EASY
IMPORTANT

Find the argument of 1+i1-3i

EASY
IMPORTANT

The value of 1+cosπn+isinπn1+cosπn-isinπnn

HARD
IMPORTANT

If x2+x+1=0 has one root 'α'. Then find α+1α2+α2+1α22+α3+1α32...α27+1α272.

MEDIUM
IMPORTANT

Convert the complex number z=i-1cos π3+i sin π3 in the polar form.

EASY
IMPORTANT

Find the modulus and argument of 1+i1-i.